. . Key Terminolo; BCS Definition
GCSE ComPUter SCIence KnOWledge Organlser Higyh—level Iangide “Designed to allow the expressio.n of a computer programin a
SLR 2.5 Programming languages and IDEs: et of how the soution % prodced, One o ey
Characteristics and purpose Low-level language ;fCtlE:en;t:(:E?nc:igi:iit_aoannec.l”closely related to the design

of different levels of programming language

High- and low-level languages 101
. 102
Machine code h
. 105
* Binary representation of instructions in a format that the CPU can decode and execute. e
. . . 18
* Includes an operation code (opcode) instruction and address or data to use (operand). I i
111 00000036 803C0800
Low-level languages 1
. . 114 0000003A 75F9
* Written in assembly language. 1
. . . 17
* Converted into machine code using a translator called an assembler. 1
* Used for embedded systems and device drivers where it is necessary to instruct hardware ;33 —
directly.

» One instruction translates into one machine code instruction. Low-level: Assembly High-level: Source code

* Code only works with one specific type of processor.
* Programmers work with memory directly.
* Code is harder to write and understand.

Low-level languages like assembly allowed programmersto Two factors led to an explosion in the
express programs using simple commands, which could use of high-level languages:
then be translated into machine code.

* Memory-efficient. * Increased processor speed
« Code is quick to execute. These languages were written for a specific processor and .

. : . * Increased memory capacity
High-level languages closely mapped to machine architecture.

* Written in languages like Python, C++, Java and Visual Basic.
* Converted into machine code using a translator called a compiler or interpreter.

Assembly languages are now reserved

Programs written in assembly language are incredibly e ; .
for specialist situations like:

efficient.
* Makes writing programs easier by utilising commands that are like English.
. Embedded systems
* One source code instruction translates to many machine code instructions. However, assembly language requires a great deal of
* Code will run on different types of processors. intellectual effort to use, as it is difficult to write and » Device drivers
* Programmers can use many different data structures. understand.

* Code is quicker and easier to understand and write.
* Less memory-efficient.
* Code can be slower to execute if it is not optimised.

Key Terminology BCS Definition

GCSE CompUter SCience KnOWledge Organiser Translator “Takes a program written in one programming language and

SLR 2.5 Programming languages and IDEs: converts it to another.”

Compiler “Translates high-level language source code into a
computer’s machine code.”
The purpose of translators P
Interpreter “Translates and executes a program one statement ata
time.”
The purpose of translators Compilers and interpreters

Code written in both low-level assembly code and high-level source code is converted into

binary machine code ahead of execution — this is the purpose of a translator. Compiler: Translates source code from high-level Interpreter: Translates source code from high-

languages into object code and then into machine level languages into machine code ready to be

. . code ready to be processed by the CPU. The processed by the CPU. The program is translated
There are two types of translators used to convert source code into machine code —)] .]) :)
. . whole program is translated into machine code line by line as the program is running.
interpreter and compiler. o
before it is run.
Advantages:
Assembly code is always translated into machine code using another type of translator Advantages:))
called an assembler. * Easy to write source code — the program will
Low-level language * No need for translation software at runtime. always run and only stop when it finds a syntdx
error.
o /I. * Faster to execute.
— ¥
>- . Code I timised * Code does not need to be recompiled
= ode 1s usually optimised. following changes, making it is easier to try odt
Assembly (,122;'3;";2, + Original source code can be kept secret. commands.
code
Disadvantages: * A very easy way for beginner programmers tg
learn how to write code.
High-level language (((.))) * Source code is easier to write in a high-level
E ————— .
Machine code language, but the program will not run with Disadvantages:
— Transiat (Binary) syntax errors, which can make writing the . : : :
—_ = ranslator v * Translation software is required at runtime.
—_— (interpreter) code more difficult.
: N Cod dsto b iled follow * Slower to execute.
Szlj_ldrge) ode needs to be recompiled following any . o
) "4 changes. * Code is not optimised.

Translator Object

{Compiler) code * Designed for a specific type of processor. * Source code must be available.

Key Terminology BCS Definition

GCSE CompUter SCience KnOWledge Organiser IDE Integrated Develop Er?vironrﬁ.e'nt: “A software application that
SLR 2.5 Programming languages and IDEs: Normally consis of » source code edior, buld actomation

Integrated Development Environments (IDEs) tools and a debugger”

IDE: Error diagnostics “IDE tools that provide detailed feedback on errors in
code.”

IDE: Run-time “A configuration of hardware and software. Includes the
environment CPU type, operating system and any runtime engines or

. . . system software required by a particular category of
IDE’s provide the following functions: application.”

* Debugging tools for finding logic errors:
* Breakpoints to stop a program during execution when an error is found.
* Stepping through lines of code one at a time to check which lines are executing.
* Tracing through a program to output the values of variables. « Easily comment out sections of code.
* Help with preventing and identifying syntax errors:
* lllustrating keyword syntax and auto-completing command entry.

Common Features of an IDE:

¢ Automatically indent regions of code.

* Error highlighting. Provide a run-time environment and output
* The compiler produces an output of the error message to help identify it. window. 5)

* Run-time environment:

ogram counte 0

. Output W|nd0W. . Prov|de an edltor ##lli:iiizilng t;:;igi:(u;cgli!l) .‘:rf an IDE
. . . . 1: & Debug Control - -
 Simulating the different devices that the program can run on. Sprint (= Lo Y ° *h

print ("There we

¢ LI ne nu m bers Go | Step | Over | Out | Quit P Stock Ll Souace
¥ Locals I™ Globals

= gree bottles.py:4: <module>)
n

* Usability functions:

. print (" st g or .
* Navigation, showing/hiding sections of code. * Keyword colour highlighting e e g e B
. L.i’ > '_main_".<module>(), line 4: if counter> 1:
* Formatting source code.
. ¢ Auto-complete Thete wore 7 croen bottles s e
* Find and replace. P There ware & Jreen bottles |

Wb

* Commenting or indenting regions of code. Debugging features: There were 4 green bottles
There were green bottles

There were green bottles g|-innotations_{)
buittins__ <module ‘builting’ (built-in)>

* Automatic highlighting of syntax errors. |Thexe was 1 green bottle =iti7 /™=

and if the last green bottle _file_ *C:/Users/Polaris/Desktop/gree bottles.py’

Locals

2
6

There were 5 green bottles
4
3
2

>>> _loader_ <class_frozen_importlib Buifinimporter'>
. [DEBUG ON] name_“_main_
* Breakpoints 5> == =
RESTART: C:/US|_spec_ None =
counter 8
° Variable tracing There were 9 green bottles sitting on the wall

tm:35 Cok0

* Step though line by line and...

e ..watch variables change

	Slide 1
	Slide 2
	Slide 3

