
GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of variables, constants, inputs, outputs
and assignments

Key Terminology BCS Definition

Variable “A value that can change depending on conditions or
information passed to the program.”

Constant “A value that cannot be altered by the program during
normal execution.”

Operator “Tells a program how to manipulate or interpret values.
Categories of operators you need to know about are
arithmetic, Boolean and comparison.”

Assignment “Giving a variable or constant a value (e.g., counter = 0).” What is a variable?
• The memory address register (MAR)

contains the address of an
instruction or data to be fetched from
or written to main memory.

• In a similar way, a variable is nothing
more than a pointer to a memory
address with a user-friendly label.

Key Terms
• Variable: A value stored in memory that can change while the program is

running – can be an integer, character, string, real/float or Boolean value.
• Constant: A value that is assigned when the program is first written and does

not change while it is running.
• Assignment: Supplying a variable or constant with a value.
• Casting: Converting a variable from one data type to another (e.g., integer to

string). A variable can be an integer, character, string, real (float) or Boolean.
• Input: A value read from an input device (e.g., keyboard).
• Output: Data generated by the computer and displayed to the user.

The advantages of constants
• Constants make a program easier to read, as they are usually declared and

assigned at the top of the program.
• They allow programmers to modify a program by changing one value rather

than having to change every instance of a value throughout the program,
reducing the possibility of errors.

• If constants are used instead of variables, a compiler can be used to
optimise code, making the program run faster.

Why do we use casting?

• Casting changes a variable from one data type another (e.g., a string to an integer).

• Inputs from the keyboard are always characters – multiple characters are called a string.

• However, to perform an addition, the arithmetic logic unit (ALU) must use numbers – therefore, a
string needs to be cast to a number.

• The character “1” as typed on a keyboard is stored as the binary number 00110001 using the ASCII
character set.

• Meanwhile, the number 1 that the ALU needs to perform a calculation is stored as the binary
number 00000001.

• Integers require less memory than numbers with a decimal part (real numbers), so it makes sense
to use integers where we can to make a program more memory-efficient.

• However, it may be necessary to cast an integer to a real number in a program – some commands
also require data to be of a particular data type.

Why do we use casting?

Integer
A positive or negative whole number (e.g., 6)
Use: total = total + score
Never used for telephone numbers
Used only when arithmetic needs to be performed on the data

Real
A number with a decimal part (e.g., 6.5)
Sometimes called float (floating-point)
Use: cost = total + vat

Character
A single alphanumeric character (e.g., “1” or “a”)
Used for menu choices
Use: choice = input(“Enter your choice:”)

String
Multiple alphanumeric characters (e.g., “Craig”)
Used for words and telephone numbers
Use: forename = “Craig”

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of the three basic programming
constructs

Key
Terminology

BCS Definition

Sequence “One of the three basic programming constructs.
Instructions that are carried one after the other in order.”

Selection “One of the three basic programming constructs.
Instructions that can evaluate a Boolean expression and
branch off to one or more alternative paths.”

Count-
controlled
iteration

“An iteration that loops a fixed number of times. A count
is kept in a variable called an index or counter. When the
index reaches a certain value (the loop bound) the loop
will end. Count-controlled repetition is often called
definite repetition because the number of repetitions is
known before the loop begins executing.”

Condition-
controlled
iteration

“A way for computer programs to repeat one or more
steps depending on conditions set either a) initially by
the programmer or b) by the program during execution.”

1. Sequence
• Sequence means executing instructions in order, one

after the other.

2. Selection (branching)
• Selection means a program will branch depending on certain conditions.

3. Iteration (looping)
• Iteration, sometimes called looping, means repeating sections of code.

A DO…UNTIL loop is an alternative to WHILE
where the code executes at least once before
the condition is checked.

A WHILE loop (also known as a condition-
controlled loop) is used when the required
number of iterations is not known ahead of
execution because the variable used to
determine when the iteration ends is changing
within the iteration itself.

A FOR loop (also known as a counter-
controlled loop) is used when the required
number of iterations is known ahead of
execution.

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The common arithmetic, comparison and
Boolean operators

Key Terminology BCS Definition

Arithmetic operator + - / * ^ “Used in mathematical expressions (e.g., num1 + num2 =
sum).”

Boolean operator: AND “A logical operator used within a program. Only returns TRUE if both
values being compared are TRUE.”

Boolean operator: OR “A logical operator used within a program. Returns TRUE as long as
either value being compared is TRUE.”

Boolean operator: NOT “A way for computer programs to repeat one or more steps
depending on conditions set either a) initially by the programmer or b)
by the program during execution.”

Arithmetic operator: MOD “Integer division. MOD outputs the remainder left over after division –
e.g., 10 MOD 3 = 1.”

Arithmetic operator: DIV “Integer division: DIV outputs the number of times a number fits into
another number – e.g., 10 DIV 3 = 3.”

1. Common arithmetic operators
Operator Example Meaning Result

+ x = 7 + 2 Addition 9

- x = 7 - 2 Subtraction 5

* x = 7 * 2 Multiplication 14

/ x = 7 /2 Division 3.5

^ x = 7 ^ 2 Exponentiation 49

MOD x = 7 MOD 2 Modulus 1

DIV x = 7 DIV 2 Integer division 3

2. Common comparison operators

Operator Example Meaning

== 7 == 7 Equal to

!= 7 != 5 Not equal to

< 5 < 7 Less than

<= 5 <= 5 Less than or equal
to

> 7 > 5 Greater than

>= 7 >= 7 Greater than or
equal to

Note: Different languages may use
alternate symbols to represent

these operators. For example, “not
equal to” could be:

!=
<>
~=

3. Boolean operators
Boolean operators can be used in If statements and while loops to check if a condition is true
or false. – See SLR 2.4 Boolean Logic
NOT
end_of_file = False
while not end_of_file …is the same as… while end_of_file == False:

AND
end_of_file = False
found = False
while not end_of_file and not found

OR

if x == 2 or x == 4

while choice < 1 or choice > 3

Creating an infinite loop

while True

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of data types and casting

Key
Terminology

BCS Definition

Data type “The basic data types provided as building blocks by a programming
language. Most languages allow for more complicated, composite
types to be constructed from basic types recursively – e.g., char,
integer, float, Boolean. As an extension, a string data type is
constructed behind the scenes of many char data types.”

Integer “A data type used to store positive and negative whole numbers.”

Real “A data type used to store an approximation of a real number in a
way that can support a trade-off between range and precision.
Typically, a number is represented approximately to a fixed
number of significant digits and scaled using an exponent.”

Boolean “Used to store logical conditions – e.g., TRUE/FALSE, ON/OFF,
YES/NO, etc.”

Character “A single alphanumeric symbol.”

String “A sequence of alphanumeric characters and/or symbols – e.g., a
word or sentence.”

Casting “Converting a variable from one data type to another. For
example, a variable entered as a string needs to be an integer for
calculation – age = INPUT(“Enter your age: “) age = INT(age).”

Variables and constants can hold:
Integer: A whole positive or negative number. Only used for data that requires
calculations.
Real/float: A number with a decimal part. Only used for data that requires
calculations.
Character: A single alphanumeric character.
String: A set of characters. Used for all data that is not calculated.
Boolean: True or false, often called a flag. Used to track if something has happened or
not.

Changing a data type from one type to another is known as casting, which allows
numbers to be manipulated as strings and is used to ensure that sub-problems receive
data in a format they are expecting.

Casting also allows inputs that are always strings to become numbers:
x = str(x) casts the variable x to a string
x = int(x) casts the variable x to an integer
x = float(x) cast the variable x to a float
x = chr(x) cast the variable x to a character

Selecting suitable data types for data in a given scenario
Select the most appropriate data types for the variables in this scenario:

“A program asks for a user’s name, age and telephone number. If they are 17 years of
age or younger, the program informs them they are
not eligible to vote as they are too young. If they are 18 or over, the program stores their
details and tells them they are eligible to vote.”

String Integer Real Boolean

vote ✓

name ✓

age ✓

telephoneNumber ✓

Many students often choose integer by mistake.

The telephone number 07548 433844 would be stored as

7548433844 if we used an integer, so

we would lose the leading 0.

Numbers are also often entered with other non-integer

symbols – e.g., (07548) 433-844.

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of basic string manipulation: OCR Exam Reference
Language (ERL)

Key
Terminology

BCS Definition

String
manipulation

“Commands and techniques that allow you to alter and extract
information from textual strings – e.g., .length .substring(x, i) .left(i)
.right(i) .upper .lower ASC(…) CHR(…).”

What is String Manipulation?
String manipulation is the act of
manipulating, extracting or changing the
characters in a string variable.

To get the length of a string:
Concept Keyword/Symbol

String length .length

length = string.length

Returns the length of a string.

e.g., if the string was “Hello”, the

length would be 5.

Converting cases:
Concept Keyword/Symbol

Uppercase .upper
Lowercase .lower

Returns the string in
uppercase or lowercase.

e.g., if the string was “Hello”,
ustring would be “HELLO”.
e.g., if the string was “Hello”,
lstring would be “hello”.

ustring = string.upper

lstring = string.lower

To extract a substring:
Returns part of a string, starting at the
character of the first parameter and
counting up by the number in the
second parameter.

Concept Keyword/Symbol

Substrings .substring(x, i)

stringname.subString(startingPosition, numberOfCharacters)

chars = string.substring(3,1)
e.g., if the string was “Hello”,
chars would be “l”.

To extract text from the left or right of a string:
Returns the left most or right most
characters from a string where the
parameter indicates how many to return.

e.g., if the string was “ComputerScience”,
then .left(8) would return “Computer”.

Concept Keyword/Symbol

Substrings .left(i)

Substrings .right(i)

left = string.left(8)

right = string.right(7)
e.g., if the string was “ComputerScience”,
then .right(7) would return “Science”.

To concatenate (join) separate strings together:
Joins separate string values
together

Concept Keyword/Symbol

Concatenation +

Print(stringA + stringB)

Print("Hello, your name is: " + name)

ASCII conversion:
Concept Keyword/Symbol

ASCII Converstion ASC(…)

CHR(…)
Returns the ASCII value of a character.
Returns a character from its ASCII number.

ASC(character)

ascii = ASC(“A”)

CHR(asciinumber)

char = CHR(65)

e.g., ascii would be 65.

e.g., char would be “A”.

Example:

someText=“Computer Science”

print(someText.length)

print((someText.substring(3,3)).upper)

16

PUT

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of basic string manipulation: Python

Key
Terminology

BCS Definition

String
manipulation

“Commands and techniques that allow you to alter and extract
information from textual strings – e.g., .length .substring(x, i) .left(i)
.right(i) .upper .lower ASC(…) CHR(…).”

What is String Manipulation?
String manipulation is the act of
manipulating, extracting or changing the
characters in a string variable.

To get the length of a string:
Concept Keyword/Symbol

String length Len(string) Returns the length of a string.

e.g., if the string was “Hello”, the

length would be 5.

Converting cases:
Concept Keyword/Symbol

Uppercase .upper()
Lowercase .lower()

Returns the string in
uppercase or lowercase.

e.g., if the string was “Hello”,
ustring would be “HELLO”.
e.g., if the string was “Hello”,
lstring would be “hello”.

ustring = string.upper()

lstring = string.lower()

To extract a substring:
Returns part of a string, starting at the
character of the first parameter and
counting up by the number in the
second parameter.

Concept Keyword/Symbol

Substrings .substring[x, i]

stringname.subString(startingPosition, numberOfCharacters)

chars = string[2:3]
e.g., if the string was “Hello”,
chars would be “l”.

To extract text from the left or right of a string:
Returns the left most or right most
characters from a string where the
parameter indicates how many to return.

e.g., if the string was “ComputerScience”,
then .left(8) would return “Computer”.

Concept Keyword/Symbol

Substrings .left(i)

Substrings .right(i)

left = string.left(8)

right = string.right(7)
e.g., if the string was “ComputerScience”,
then .right(7) would return “Science”.

To concatenate (join) separate strings together:
Joins separate string values
together

Concept Keyword/Symbol

Concatenation +

print(stringA + stringB)

print("Hello, your name is: " + name)

ASCII conversion:
Concept Keyword/Symbol

ASCII Converstion ord(…)

chr(…)
Returns the ASCII value of a character.
Returns a character from its ASCII number.

ord(character)

ascii = ord(“A”)

chr(asciinumber)

char = chr(65)

e.g., ascii would be 65.

e.g., char would be “A”.

Example:

someText=“Computer Science”

print(len(someText))

print((someText[3:6].upper())

16

PUT

length = len(string)

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of basic file handling operations

Key
Terminology

BCS Definition

File handling:
Open

“File handling is the process of dealing with input to and from files.
Files first have to be opened, creating a handle to the file and
allowing reading and writing.”

File handling:
Read

“Once a file has been opened, it is possible to use commands to
read its contents and return them to a program.”

File handling:
Write

“Once a file has be opened it is possible to use commands to
write data to the file from a program.”

File handling:
Close

“When a file is no longer in use, closing it releases the file handle
and breaks the connection between the file and a program.”Reading and writing data to text files

The stages of writing data to a file are:
• Open the file for creating/overwriting or appending to a file.
• Write the data to the file.
• Close the file.

The stages of reading data from a file are:
• Open the file for reading data.
• Set a Boolean variable to “false” to indicate the end of file has not been reached.
• While the end of file flag is false and the search item has not been found:

• Read the data from the file.
• If the data matches what is being searched for, assign the data to variables or output.
• Check if the end of the file has been reached and if it has, set the Boolean variable to

“true”.
• Close the file.

We use “open” to open a file to read/write data
from/to. We then use writeLine to write a line of text
and readLine to return a line of text. The following
program assigns x as the first line of sample.txt.

myFile = open(“sample.txt”)

 x = myFile.readLine()

myFile.close()

endOfFile() is used to determine the end of
the file. The following program will print out
the contents of sample.txt.

myFile = open(“sample.txt”)

while NOT myFile.endOfFile()

 print(myFile.readLine())

endwhile

myFile.close()

In the program below, hello world is written
to sample.txt – any previous content is
overwritten.

myFile = open(“sample.txt”)

myFile.writeLine(“Hello World”)

myFile.close()

To create a new file called myNewFile.txt.

newFile = (“myNewFile.txt”)

Reading and writing data to text files (OCR Exam Reference Language)

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
The use of records to store data

Key Terminology BCS Definition

Record “A data structure consisting of a collection of elements, typically in fixed number and
sequence and indexed by name. Elements of records may be called fields. The record
is a data type that describes such values and variables. Most modern languages allow
programmers to define new record types, as well as specifying the data type of each
field and an identifier by which it can be accessed.”

Records stored in text files
• Stored on secondary storage (hard disk/SSD/flash).
• Used to store data when the application is closed.
• Useful for small volumes of data – e.g., configuration

files.
• Each entry is stored on a new line or separated with an

identifier such as a comma or tab.
• May require a linear search to find/read data, which can

be slow with unordered data or record structures.
• Structured text files (e.g., CSV, XML, JSON) can be used

to store data and exchange it between applications.

Records stored in arrays and lists
• Stored in main memory (RAM).
• Used to store data when a program is running.
• Useful for small volumes of data currently in use by an

algorithm.
• Can be single- or multi-dimensional.
• Use indexes to refer to data items.
• Efficient algorithms or linear searches can be used to

find data.

Records stored in databases
• Often stored on remote servers.
• Often used to store data shared by multiple users –

e.g., ticket booking system.
• Data is stored in records and fields.
• Use advanced data structures to store data efficiently.
• Data can be searched and sorted using highly efficient

algorithms.
• More secure than text files.
• The order of database fields is independent of the code.

Record structure
• A collection of related fields.
• A field is a variable.
• Each field in a record can have a different data type.
• There are three steps to using record structures:
• Define the record structure – what fields will be in the record?
• Declare a variable or array to use with the record structure.
• Assign and retrieve data from the variable record.
• Be careful to note the dot syntax when using records – e.g., Record<dot>Field, car1.Make

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
Using SQL to search for data

Key Terminology BCS Definition

SQL “The language and syntax used to write and run database
queries.”

SQL command:
SELECT

“A SQL keyword used query (retrieve) data.”

SELECT Name, Age, Class
FROM Students_table
WHERE Gender = “Male”

SQL command:
FROM

“A SQL keyword used to signify which table(s) are
included in a query.”

SELECT Name, Age, Class
FROM Students_table
WHERE Gender = “Male”

SQL command:
WHERE

“A SQL keyword used to filter query results.”

SELECT Name, Age, Class
FROM Students_table
WHERE Gender = “Male”

SQL: Structured Query Language
• SQL is used to create, delete, modify and manipulate

records in a database. Basic commands include:
• SELECT which fields to be returned – * can be used to

indicate all fields.
• FROM which table – databases can have more than one

table, each with their own unique name.
• WHERE records meet a condition – LIKE can be used as

a wildcard.

What is SQL: Structured Query Language
• Information in a database is stored in records. Each record

can contain a number of fields.
• We can manipulate the data in these fields using a

programming language called Structured Query Language
(SQL).

SQL in your exams:
• In your exams you will be expected to write a simple SQL query

to find a result from a table. The format this will take will be:
SELECT [field names]
FROM [Table name]
WHERE [condition]

Example 1
SELECT population
FROM world
WHERE name = “Albania

Example 3
SELECT *
FROM world
WHERE name LIKE “A%” AND
population > 10000000
ORDER BY name ASC

Example 2
SELECT *
FROM world
WHERE name = “Algeria”

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
Use of Arrays

Key Terminology BCS Definition

Array “A set of data items of the same type grouped together
using a single identifier. Each item is addressed by its
variable name and a subscript.”

What is an array?
• Think of an array as a variable that can contain more than one data item –

for example, storing a list of names.
• We can store a list of names by allocating a contiguous part of memory for

that data.
Contiguous means all the data is stored together, one element after the
other.

• Note: Lists are different to arrays because they are not contiguous.
• The program will know where our array starts in memory – in this case,

address 05.
• It uses an index relative to this start point to allow us to easily access the

array’s contents.
• For example, “Jane” is at index 2.

Arrays
• A static number of related data items are stored together in

the same memory space.
• Each data item has the same data type.
• A specific data item (element) can be found using its index.
• Arrays usually start at 0 for the first data item, known as

zero-indexed.
• Arrays may be single- or multi-dimensional.
• You can visualise these dimensions as a column (one-

dimensional) or table (two-dimensional).

Arrays: OCR Exam Reference Language
• Arrays will be zero-based and declared with the keyword

array.

array names[5]

names[0]=”Ahmad”

names[1]=”Ben”

names[2]=”Catherine”

names[3]=”Dana”

names[4]=”Elijah”

print(names[3])

Concept Keyword/Symbol

Declaration array names[…]

Assignment names[…] = …

Example two-dimensional array:

Example one-dimensional array:

array gameboard[8,8]

gameboard[0,0]=“rook”

print(gameboard[3,4])

Concept Keyword/Symbol

Declaration array gameboard[…,…]

Assignment gameboard[…,…] = …

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
Sub-programs: Procedures and Functions

Key Terminology BCS Definition

Sub-programs “A block of code given a unique identifiable name within a
program. Supports code reuse and good programming
technique.”

Procedure “A block of code within a program that is given a unique,
identifiable name. Can take upwards of zero parameters
when it is called. Should be designed and written to
perform a task or action that is clearly indicated by its
name.”

Function “A block of code within a program that is given a unique
identifiable name. Can take upwards of zero parameters
when it is called and should return a value. Should be
designed and written to perform a task or action that is
clearly indicated by its name.”

Advantages of using sub-programs
• Programs are easier to write and debug.
• Components can be easily reused.
• Functions can be stored in a library for easy reuse across multiple

programs.
• For example, import random imports the random library of functions into a

program.
• Programs are also easier to test.

Here we can see how sub-programs are called from
inside flowcharts.

What is a sub program?
• Sub-programs are self-contained blocks of code within a larger program

that perform specific tasks. They are reusable and can be invoked multiple
times, often with inputs (parameters), and may return outputs. Examples
include functions, procedures, and methods in programming languages.

There are two main types of sub-program:

• Procedures
• Carry out a task.
• Provide structure to code.

• Functions
• Carry out a task and return a value.
• Create reusable program components.

• Larger programs are developed as a set of sub-programs or sub-programs.
• Structuring code using sub-programs makes it easier to read and debug.
• Functions return values and create reusable program components.
• Procedures structure a program in a modular way, making it easier to read.
• Each sub-program can be tested independently.
• Sub-programs can be saved in libraries and reused in other programs.

Sub-programs – procedures and functions
(OCR Exam Reference Language)
Here, the triple function takes in one parameter – an

integer – and returns that number multiplied by 3.

Here, we are calling the function and passing in the

integer 3.

function triple(number)

 return number * 3

endfunction

y = triple(7)

Here, the greeting function takes in one
parameter – a string – and concatenates it with
“hello”.
procedure greeting(name)

 print(“hello”+name)

endprocedure

Here, we are calling the procedure and passing in the string “Craig”.

greeting(“Craig”)

Sub-programs

Concept Keyword/Symbol

Procedure procedure name(…)

 …

endprocedure

Calling a procedure procedure(parameters

)

Function function name(…)

 …

 return …

endfunction

Calling a function function(parameters)

GCSE Computer Science Knowledge Organiser
SLR 2.2 Programming Fundamentals:
Random Number Generation

Key Terminology BCS Definition

Random number
generation

“Most programming languages have built-in functions or
libraries that allow you to easily generate random
numbers. Creating truly random numbers is actually rather
difficult for a computer, and these algorithms are quite
complex.”

There are many situations when you might want to generate a
random number:
• Simulating the roll of a dice
• Generating a set of coordinates
• Gambling simulation
• National lottery program
• Selecting a quiz question from a list
• Cryptography

• Random numbers can be referenced with the following notation:

Example code for rolling three dice using a random number generation in
Python

num = random(2,5) Concept Keyword/Symbol
Random number random(… , …)

This will generate a random number between 2 and 5 and store it

in the variable num.

import random # Importing the libary files

Generating a random integer using randint to get a
number between 1 and 6 for three dice
dice1 = random.randint(1,6)
dice2 = random.randint(1,6)
dice3 = random.randint(1,6)

Displaying the rollded dice numbers
print("Dice rolled:",dice1,dice2,dice3)

Checking which dice match and calculating the score
if dice1 == dice2 and dice1 == dice3:

score = dice1 + dice2 + dice3
elif dice1 == dice2:

score = dice1 + dice2 - dice3
elif dice1 == dice3:

score = dice1 + dice3 - dice2
elif dice2 == dice3:

score = dice2 + dice3 - dice1
else:

score = 0

Outputting the score
print("Score: ",score)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

