
GCSE Computer Science Knowledge Organiser
SLR 2.3 Producing Robust Programs :
Defensive Designs Considerations

Key Terminology BCS Definition

Defensive design “The practice of planning for contingencies in the design stage 
of a project.” 

Anticipating misuse “Ensuring data input by a user meets specific criteria 
before processing. Range check (e.g., 1 – 31); type check 
(e.g., a number, not a symbol); presence check (e.g., data 
has been input); format check (e.g., a postcode is written 
LLN(N) NLL). 

Authentication “Techniques and methods that make code easier to debug, 
update and maintain.” 

Input validation “Many programmers use defined naming conventions for 
variables, contents and procedures. Camel case is a 
popular one used in the industry where the first word of an 
identifier uses all lower case and all subsequent words 
start with a capital letter – e.g., studentsFirstName.” 

Input validation
Input validation means checking that data input by the user meets specific 
criteria/rules before processing:
• Type check: The input is of the correct data type – e.g., integer, real, string.
• Range check: The input is within a predetermined range – e.g., between 1 and 2.
• Presence check: All required data has been entered – e.g., reject blank inputs.
• Format check: The input is in the correct format – e.g., DD/MM/YYYY.
• Length check: The input includes the correct/minimum/maximum number of 

characters – e.g., password.

By using input validation techniques, a programmer can:
• Make their program more robust and user-friendly
• Prevent further errors occurring later in the algorithm

Division by zero

In mathematics, there is no number that, when multiplied by zero, returns a number 
that is not zero.

Therefore, an arithmetic logic unit cannot compute a division by zero – for example:

num = 0

average = total / num

This line of code, while syntactically correct, could potentially cause a program to crash.

A programmer should always check that a variable is not zero before attempting to use 
it in division – for example:

IF num != 0:

average = total / num

ELSE:

print(“No scores entered”)

Communication error
Online systems require connections to host servers. 
If this connection is dropped or cannot be established or the 
server becomes overloaded, a program may crash or hang 
when loading or saving data.

Disk Errors
Programs that read and write to files need to handle many 
types of exceptions, including:
• File/folder not found
• Insufficient disk space
• Data corruption
• End of file reached

Robust programs will handle all these situations by checking 
files and data before attempting to use them for further 
processing.

Printer and other peripheral errors

If a program outputs a document to a printer, it 
may run out of ink or experience a paper jam.
The programmer should not assume that an 
output to a printer will always be successful and 
always include options to reprint documents.

Authentication
Data used by systems should be secure – this can be 
achieved with:
• Username and password access.
• Password recovery by sending an email with a 

verification link to the registered email address.
• Data file encryption.

Online bots can automatically submit data via online 
forms – this can be protected against using software such 
as reCAPTCHA, which verifies that the user is human.

Programmers should also be aware of SQL injection 
hacks and other methods used by cybercriminals.

A programmer should enable ways for the 
user to cancel requests or for them to fail 
gracefully, reporting the connection error.
The program may be able to automatically 
resume when the connection becomes 
available again.



GCSE Computer Science Knowledge Organiser
SLR 2.3 Producing Robust Programs :
Maintainability 

Key 
Terminology

BCS Definition

Maintainability “The practice of planning for contingencies in the design 
stage of a project.” 

Naming 
conventions 

“Many programmers use defined naming conventions 
for variables, contents and procedures. Camel case is 
a popular one used in the industry where the first word 
of an identifier uses all lower case and all subsequent 
words start with a capital letter – e.g., 
studentsFirstName.” 

Indentation “Makes it easier to see where structures begin and 
end. Conditions, iterations and code inside 
procedures and functions should be indented.” is 
known before the loop begins executing.”

Commenting “Used to explains sections of code. Ignored by the 
compiler.” 

Writing maintainable code
To make your code as easy to read and maintain as possible, 

make sure you use:

• Comments to divide the program into sections and 

explain:

• The program’s purpose.

• Sections of code – typically, selections, iterations 

and procedures.

• Any unusual approaches taken.

• White space to make program sections easier to see.

• Indentation for every selection and iteration branch.

• Descriptive variable names, explaining each variable’s 

purpose with a comment when it is declared.

• Procedures and/or functions to:

• Structure code.

• Eliminate duplicate code.

• Constants – declared at the top of the program.

Using comments to divide the program into distinct sections.

Using comments to explain what various parts of the program 
are designed to do.

Using indentation.
Using sensible, descriptive identifier names.



GCSE Computer Science Knowledge Organiser
SLR 2.3 Producing Robust Programs:
The Purpose and Types of Testing & Suitable Test Data

Key Terminology BCS Definition

Testing “Assessing the performance and functionality of a program under various 
conditions to make sure it works. Programmers need to consider all the 
devices the program could be used on and what might cause it to crash.” 

Iterative testing “Each module of a program is tested as it is developed.” 

Final/terminal testing “Checking that all the modules of a program work together as 
expected and the program meets the expectations of users with real 
data.” 

Test data “Values used to test a program – normal, boundary and erroneous.” 

Test data: Normal “Data supplied to a program that is expected. Using a program 
written to average student test scores as an example, if allowed 
scores are 0 – 100, normal test data would include all the numbers 
within that range.” 

Test data: Boundary “Data supplied to a program designed to test the boundaries of a 
problem. Using a program written to average student test scores as 
an example, if allowed scores are 0 – 100, boundary test data could 
be -1, 0, 1, 99, 100 and 101.” 

Test data: Invalid “Data of the correct type but outside accepted validation limits. 
Using a program written to average student test scores as an 
example, if allowed scores are 0 – 100, invalid test data could be -5, 
150, etc.” 

Test data: Erroneous “Data of the incorrect type that should be rejected. Using a program 
written to average student test scores as an example, if allowed 
scores are 0 – 100, erroneous data might be the string “hello”, the 
real number 3.725, etc.” 

Reasons for testing
Four main reasons why a program should be tested 

include:

• To ensure there are no errors (bugs) in the code.

• To check that the program has an acceptable 

performance and usability.

• To ensure that unauthorised access is prevented.

• To check the program meets the requirements.

Types of testing
Iterative testing:

• Each new module is tested as it is written.

• Program branches are checked for functionality.

• Checking new modules do not introduce new errors in 

existing code.

• Tests to ensure the program handles erroneous data 

and exceptional situations.

Final / Terminal testing:

• Testing that all modules work together (integration 

testing)

• Testing the program produces the required results with 

normal, boundary, invalid and erroneous data.

• Checking the program meets the requirements with 

real data.

• A beta test may find more errors.

Performed when 
the program is 

finished

Performed whilst 
the software is 

being developed Test data needs to include a range of:
• Normal inputs: Data that should be accepted without 

causing errors.

• Erroneous inputs: Data that should be rejected by the 

program – includes no input when one is expected.

• Boundary inputs: Data of the correct type that is on 

either edge of the accepted validation limits.

• Invalid inputs: Data of the correct type but outside 

accepted validation limits.

No. Type of test Input Expected output

1 No data Reject input

2 Erroneous data j Reject input

3 Erroneous data # Reject input

4 Invalid data -6 Reject input

5 Invalid data 8 Reject input

6 Invalid data 2.5 Reject input

7 Normal data 2 Accept input

8 Boundary data 1 Accept input

9 Boundary data 3 Accept input



GCSE Computer Science Knowledge Organiser
SLR 2.3 Producing Robust Programs :
How to identify syntax and logic errors & Refining algorithms 
to make them more robust

Key 
Terminology

BCS Definition

Syntax error “Rules of the language have been broken, so the program will not 
run. Variables not being declared before use. Incompatible variable 
types (e.g., sum = A); using assignments incorrectly (e.g., 2 + 2 = x); 
keywords misspelt (e.g., PRNT(“Hello”)).” 

Logical error “The program runs but does not give the expected output. 
Division by zero. Infinite loop. Memory full. File not found.” 

Syntax and logic errors
Syntax error: 
The rules of the language have been broken, and the program will not run (compiled languages). Syntax errors 
can occur for the following reasons:
• Variables not declared or initialised before use.
• Incompatibility of variable types – e.g., total = “A” (total declared as an integer)
• Using assignments incorrectly – e.g., 2 + 2 = x
• Misspelt keywords – e.g., prnt(“Enter choice: ”)

Logic error: 
The program runs but does not produce the expected output. Logic errors can occur for the following reasons:
• Conditions and arithmetic operations are wrong.
• Sequence of commands is wrong.
• Division by zero.
• Exceptions – e.g., file not found.

Example of Syntax error

Misspelt keyword (prnt instead of print)
Example of Logic Error

Condition is wrong - > and < are the wrong way round

Refining algorithms to make them more robust means:
• Writing code that anticipates a range of possible inputs, which may include invalid or 

erroneous data.

• Making sure invalid data inputs don’t crash the program.

• Ensuring prompts to the user are descriptive and helpful.

• Checking for errors and handling instances of no input.

A common solution is to use the simple exception-handling commands available in most 

programming languages.


	Slide 1
	Slide 2
	Slide 3
	Slide 4

